

SynBiosys based sustained release formulations

"SynBiosys® is a safe, versatile, biodegradable polymer platform applicable for sustained release formulations of API's from days to months "

The SynBiosys polymers are multi-block copolymers composed of building blocks lactide, glycolide, ε-caprolactone and polyethyleneglycol.

Original compound	Degradation products	Excreted as
Lactide	lactic acid	CO_2 and H_2O
Glycolide	Glycolic acid	CO_2 and H_2O
Caprolactone	hydroxy hexanoic acid	hydroxy hexanoic acid
Polyethylene glycol (PEG)	PEG	PEG
Butanediisocyanate	Butanediamine	Butanediamine, CO ₂
(BDI)	(putrescine), CO_2 and H_2O	and H_2O
Butanediol (BDO)	Butanediol	Butanediol

"SynBiosys® has endless versatility"

Ample choice of building blocks in the multi-block copolymer
Endless possibilities to fine tune water-swellability, polymer

degradation and API release

SynBiosys is designed to fit the purpose

Example SynBiosys structure:

SynBiosys based sustained release formulations

"SynBiosys® shows excellent release performance"

SynBiosys' versatility and water-swellability enable sustained release.

References

- Stankovic et al., European journal of pharmaceutics and biopharmaceutics, Volume: 87, Issue: 2, Pages: 329-337
- Stankovic et al., European journal of pharmaceutical sciences, Volume: 49, Issue: 4, Pages: 578-587
- Ramazani et al., European journal of pharmaceutics and biopharmaceutics, Volume: 95, Pages: 368-377, Part: B
- Gillisen et al., Journal of controlled release, Volume: 116, Issue: 2, Pages: E90-E92
- Steendam et al., Journal of controlled release, Volume: 116, Issue: 2, Pages: E94-E95
- WO2004-007588, Biodegradable phase separated MBCPs
- WO2005-068533, Amorphous MBCP
- WO2012-005594, Biodegradable, phase separated, segmented multi-block copolymers and release of biologically active polypeptides
- WO2013-015685, Biodegradable, semi-crystalline, phase-separated, thermoplastic multi-block copolymers for controlled release of biologically active compounds